Evaluation of different Nitrogen decision guides in fertilizing Corn

Nirmal Hari, James Lindal, Roger Burak, Scott Chalmers, Craig Linde, John Heard Manitoba Agriculture **Cooperators**

Eric Unrau Magda Rogalsky, University of Manitoba Kelburn Farms Manitoba Corn Growers Association AgVise Laboratories DeKalb Seeds

Background and Objectives

Manitoba Agriculture nitrogen rate guidelines for corn were developed before 1990 and are outof-date for current yield levels. Recently North Dakota State University (NDSU) has released N rate guidelines for corn and a number of in-crop scouting measures can be used to assess sufficiency and need for more N. The following study was initiated with the objective to evaluate a number of N decision guides for suitability in fertilizing corn in Manitoba.

Materials and Methods

These trials were done at five different sites and Diversification Centres staff managed three (Melita, Carberry and Arborg) out of these five sites. Additional sites were at St Adolphe (Kelburn farm) and a farm field north of Morden and were managed by Crops Branch, University of Manitoba staff and Richardson staff.

Different nitrogen treatments (0-200 lb N/acre – Table 4)) were applied as post plant surface broadcast using Super U (46-0-0). To simulate the Y-drop application of side-dress stage N, liquid UAN (28-0-0) was applied at the 6 leaf stage of corn on each side of the corn plant (treatments 7 and 8). Site description and field activities are listed in Tables 1-3. *Table 1. Site cropping history, soil characteristics and 2016 growing conditions.*

Site	Kelburn	Carberry	Arborg	Morden	Melita
Soil type	Scanterbury clay	Ramada clay loam	Peguis clay	Neuenberg sand loam Potatoes,	Ryerson loam
Previous crop	Soybean	Canola	Wheat	Rye cover C	Wheat
Soil analysis					
Nitrate-N (lb/ac in 0-24")	71	55	106	35	57
PSNT nitrate-N (lb/ac in 0-12")	170	74	254	63	95
Organic Matter (%)	7.7%	4.9%	8.6%	2.9%	4.0%
P ppm Olsen	28	8	47	33	7
K ppm	507	225	480	179	341
pH	7.1	6.0	8.0	7.8	8.0
May-Sept weather					
Crop heat units (% of normal)	112	109	106	107	108
Precipitation (inches)	16.1	12.2	11.7	18.1	14.2
% of normal	122	101	<i>93</i>	139	106

Table 2.	Field Practices.
----------	------------------

12/16 1		<u>v</u>		1110000
ay 13/10 1	7-May	20-May	04-May	13-May
			Pioneer	
EC 26-28 DK	KC26-28 1	DKC 23-17	7958AM	DKC 26-28
32	32	32	31	32
40	54	90	40	40
0	0	0	10	0
ost plant yphosate d Heat + Glyp Merge I	hosate on (14-Jun	Glyphosate on 10-Jun	Glyphosate and Heat + Merge on 09- May	Glyphosate and Heat + Merge on 21-May
phosate on June 14 sagran on	(Glyphosate on 15-Jul	Glyphosate on 10-Jun Glyphosate	Maverick on 17- Jun
11-Oct 0	9-Nov	04-Nov	04-Oct	21-Oct
	EC 26-28 DR 32 40 0 ost plant yphosate d Heat + Glyp Merge D whosate on lune 14 sagran on July 08 11-Oct 0	EC 26-28 DKC26-28 32 32 40 54 0 0 Dest plant yphosate d Heat + Glyphosate on Merge 14-Jun phosate on lune 14 sagran on July 08 11-Oct 09-Nov	20 may 32 32 32 32 32 32 40 54 90 0 0	Hy Hy Hy20-mayOr mayPioneer2C 26-28DKC26-28DKC 23-177958AM323232314054904000010ost plantGlyphosate and Heat + d Heat + d Heat +Glyphosate on on 10-JunGlyphosate Mayobsate on lune 14Glyphosate on 15-JulGlyphosate on 10-Junsagran on July 08Glyphosate on 20-Jun11-Oct09-Nov04-Nov04-Oct

Table 3. Treatment applications and crop observations.

Site	Kelburn	Carberry	Arborg	Morden	Melita
Nitrogen Treatments					
Treatments 1-6	20-May	15-Jun	08-Jul	09-May	13-May
Treatments 7-8	27-Jun	08-Jul	14-Jul	27-Jun	29-Jun
Observations					
PSNT	27-Jun	08-Jul	14-Jul	27-Jun	11-Jul
SPAD	nd	08-Jul	14-Jul	28-Jun	29-Jun
GreenSeeker1	27-Jun	08-Jul	14-Jul	28-Jun	29-Jun
GreenSeeker2	nd	18-Jul	nd	nd	20-Jul
N Deficiency Leaf rating	03-Aug	09-Aug	04-Aug	28-Jul	nd
Stalk N	11-Oct	nd	nd	nd	03-Oct

• nd = not determined at this site

- PSNT (pre side dress nitrate-N test) soil sample is taken between the rows to a depth of 12" (values reported in Table 1)
- SPAD chlorophyll readings are taken mid-leaf of the earliest leaf with a developed collar. SPAD values are referenced as an index of those measured at full N rates.
- GreenSeeker readings of NDVI are taken with the pocket GreenSeeker.
- N deficiency ratings are the number of lower corn leaves with visible N deficiency (yellowing of the midrib). The value is the number of deficiency leaves observed in 10 plants.
- Stalk N is the end of season stalk nitrate test as an index of N sufficiency/excess.

Results

Results for each site are reported in Tables 4-8.

Treatment	-	Visual	Moisture	Yield	Test wt
(lb N/acre)	NDVI	def.	(%)	(bu/ac)	(lb/bu)
1 = 0N	0.69	9 a	26.8	202	52
2 = 40N	0.70	7 ab	26.6	201	52
3=80N	0.70	4 bc	26.7	211	51
4=120N	0.68	3 c	27.0	202	51
5=160N	0.69	3 c	26.8	203	52
6=200N	0.71	1 c	26.6	206	51
7=40N+40N	0.70	5 bc	25.8	204	50
8= 40N+80N	0.70	5 bc	26.1	204	51
Mean	0.7	5	26.5	204.1	51.1
Pr>F	0.9917	<.0001	0.0763	0.9321	0.6441
CV (%)	6	60	2	5	2

Table 4. St. Adolphe corn response to different N treatments.

Values in columns followed by different letters are significantly different at the 5% probability level (according to Tukey-Kramer).

Treatment		SPAD	00	Visual	Yield	Green
(lb N/acre)	SPAD	Index	NDVI	def.	(bu/ac)	snap
1=0N	<i>49.3</i>	87%	0.38	5 a	120	1.0
2=40N	56.3	100%	0.44	1 b	115	1.5
3=80N	53.8	95%	0.41	1 b	111	1.5
4=120N	52.5	93%	0.48	0 b	123	1.8
5=160N	52.8	94%	0.44	0 b	119	2.3
6=200N	53.0	94%	0.39	0 b	123	2.3
7=40N+40N	49.0	87%	0.35	0 b	123	2.3
8= 40N+80N	56.3	100%	0.42	1 b	122	2.0
Mean	52.8		0.41		119	1.8
Pr>F	0.6484		0.1535	<.0001	0.7197	0.4312
CV (%)	14		22	89	3	115

 Table 5. Carberry corn N response to different N treatments.

Values in columns followed by different letters are significantly different at the 5% probability level (according to Tukey-Kramer).

- Volunteer wheat was not controlled until mid June and competed for N and early season corn growth.
- Severe wind caused green snap of plants. Values in table are the number of 10 plants that snapped.
- Deer damaged several of the plots adding variability to yield results.

							Weed	N in
Treatment		SPAD		Visual	Moisture	Yield	growth	weeds
(lb N/acre)	SPAD	Index	NDVI	def.	(%)	(bu/ac)	(lb/ac)	(lb/ac)
1=0N	47.0 b	87	0.78	10 a	26.5	154 с	858	23
2=40N	50.0 ab	<i>93</i>	0.79	8 a	26.1	169 bc	444	13
3=80N	50.5 ab	94	0.78	5 b	25.5	186 ab	605	25
4=120N	54.3 a	100	0.80	3 bc	25.1	194 a	327	17
5=160N	54.1 a	100	0.81	2 bc	25.2	191 a	480	14
6=200N	53.2 a	<i>98</i>	0.79	1 c	25.7	193 a	599	19
7=40N+40N	50.0 ab	<i>93</i>	0.80	4 b	26.2	187 ab	616	19
8= 40N+80N	49.7 ab	<i>93</i>	0.80	3 b	25.7	194 a	911	37
Mean	51			4	25.8	183.4		
Pr>F	0.0014		0.4293	<.0001	0.1661	<.0001		
CV (%)	7		3	70	3	9		

Table 6. Arborg corn N response to different N treatments.

Values in columns followed by different letters are significantly different at the 5% probability level (according to Tukey-Kramer).

• The broadcast N application was not applied until early July. A second flush of weeds was not controlled and biomass and N uptake was measured and reported in Table 6.

Treatment SPAD Visual Moisture Yield Test wt Stalk N (lb N/ac) SPAD NDVI def. (%) (lb/bu) $pm NO_3$ Index (bu/ac)l=0N41.9 c 88 0.64 9 a 23 178 49 46 2 = 40N46.7 ab 98 0.65 7 ab 194 52 502 24 3=80N 0.69 45.1 bc 94 6 bc 24 196 52 4102 4=120N 47.3 ab 98 199 2234 0.70 4 cd 23 51 5=160N 0.66 199 48.5 a 100 3 de 24 51 4234 6=200N 47.6 ab 100 0.69 1 e 23 197 50 3885 7=40N+80N 45.9 ab 96 0.67 5 bcd 24 186 51 2173 8= 40N+120N 46.7 ab 98 0.70 4 cd 23 184 51 3931 Mean 0.7 5 23 191 51 46 2638 Pr > F0.1500 0.7873 <.0001 <.0001 0.2183 0.1856 CV (%) 6 5 54 4 7 5

Table 7. Morden corn N response to different N treatments.

Values in columns followed by different letters are significantly different at the 5% probability level (according to Tukey-Kramer).

Treatment	• •	SPAD		Moisture	Yield	Test wt
(lb N/acre)	SPAD	Index	NDVI	(%)	(bu/acre)	(lb/bu)
1=0N	41.4 bc	89	0.46	27.2 a	187 b	52
2 = 40N	42.4 abc	91	0.50	24.6 ab	210 ab	54
3=80N	42.6 abc	<i>93</i>	0.51	24.7 ab	214 ab	53
4=120N	45.6 a	100	0.52	23.7 b	223 ab	54
5=160N	42.8 abc	<i>93</i>	0.49	24.4 b	232 ab	53
6=200N	44.2 ab	96	0.53	24.5 ab	244 a	54
7=40N+40N	40.1 c	87	0.51	23.4 b	230 ab	54
8= 40N+80N	41.8 bc	91	0.56	23.8 b	228 ab	54
Mean	42.6		0.51	24.5	221	53
Pr>F	0.0039		0.6096	0.0064	0.015	0.2933
CV (%)	6		13	6	11	2

Table 8. Melita corn N response to different treatments.

Values in columns followed by different letters are significantly different at the 5% probability level (according to Tukey-Kramer).

Corn did not respond to applied N at St Adolphe or Carberry sites, but responded significantly at Arborg and Melita and tended to increase at Morden (Figures 1-5).

The post plant applications to simulate the Y-drop applicator did not produce different yield than post plant surface applications of Super U. The exception was at Morden where the UAN application inadvertently splashed onto bottom leaves causing leaf burn and slightly lower yields (but non-significant). The application technique was modified to prevent such splash at other locations.

Few of the N decision methods or guides (Table 9) matched well with the actual N rate producing the most economic yield (Table 10). Even though visual N deficiency symptoms matched well with N rate at St Adolphe, Carberry, Arborg and Morden, they were not a particularly good guide for nitrogen sufficiency. Even where there was no yield response to N at St Adolphe, 9 of 10 plants had leaves with N deficiency symptoms (Table 4).

Figures 1-5. Nitrogen response of corn at St Adolphe, Carberry, Arborg, Morden and Melita.

I dotte > 1 2 constat.	vertierta jer i vere vereinnerta antens jer eerta
Source	
MERN	Determined using \$5/bu corn and \$0.50/lb N and by fitting a quadratic function to
	yield response (where applicable).
Manitoba	Using N recommendations from soil fertility Guide for 130 bu/ac corn and soil test N. ¹
Agriculture	
NDSU	Using N calculator based on soil texture, historic yields less than 160 bu/ac, soil test
	N and OM, $5/bu$ corn and $0.50 / lb N$. ²
AgVise	Using yield goal of 150 bu/ac for Morden and 125 bu/ac for other locations and soil
	test N.
SPAD	Sufficiency is the N rate when SPAD index is $>95\%$.
NDVI	Using NUE web-based N rate calculator for Minnesota corn. ³
PSNT	Measured on plots with base rate of 40 and using AgVise criteria for supplementation
	and yield goal of 150 bu/ac for Morden and 125 bu/ac for others. See Table 1 for
	PSNT amounts.
Stalk nitrate	Low ($<250 \text{ ppm}$) = N was deficient, Marginal (250-700 ppm) = possible that N
	shortage limited yield, Optimal (700-2,000 ppm) = yield not limited by N shortage,
	<i>Excessive</i> $(>2,000 \text{ ppm}) = N$ rates was high or some other factor reduced yield.

 Table 9. Decision criteria for N rate recommendations for corn.

Site	St Adolphe	Carberry	Arborg	Morden	Melita
			(lb N/acre)		
MERN	0	0	125	98	200+
Mb Ag	95	130	0	170	120
NDSU	0	95	0	112	93
AgVise	79	95	44	144	93
SPAD	-	40	120	40	120
NDVI	0	120	0	0	0
PSNT	10	75	10	128	55
Stalk N	80	-	-	80	-

Table 10. Observed N response and predicted N needs.

The lack of agreement between N guidelines and actual response may be caused by:

- Higher yields that we have previously experienced.
- Higher mineralization of N from organic matter.

Soil mineralization of organic matter obviously contributed greatly to the high check yields. A very crude calculation of N mineralization is shown in Table 11. The estimate is based on using a 1.12 lb whole plant N uptake/bu⁴ less soil nitrate, less starter fertilizer N. The estimated mineralization values of 56 - 160 lb N/ac are much greater than normally anticipated. Unfortunately, measurements were not taken to allow consideration of nitrate-N from deeper depths or residual N at harvest.

Table 11.	Crude estimate of nitrogen mineralization	
Cito	St Adolpha Canhoun	

Site	St Adolphe	Carberry	Arborg lb N/acre	Morden	Melita
Check Yield bu/ac	202	120	154	178	187
Est .N uptake ⁴	226	134	172	199	209
Soil nitrate 0-2'	71	55	106	35	57
Starter fertilizer N	4	6	10	4	4
Mineralized N est.	151	73	56	160	148
Measured OM%	7.7%	4.9%	8.6%	2.9%	4.0%

Such high corn yields and large N mineralization rates challenge N recommendations developed with current preplant planning techniques. A next step would be to use combined models of soil N dynamics and crop growth adjusted with real-time weather information.

References

- 1) Manitoba Soil Fertility Guide. 1996. Manitoba Agriculture
- 2) Franzen. 2014. Soil Fertility Recommendations for Corn. NDSU SF722
- 3) <u>http://www.nue.okstate.edu/SBNRC/mesonet.php</u>
- 4) Bender et al. 2013. Better Crops. Vol.97 No. 1 p7-10.