24.0 Multi-Crop Intercrop trial (Pea-Oats-Canola-Wheat-Flax-Mustard)

Project duration: 2019-2021

Collaborators: Manitoba Pulse & Soybean Growers Association - Daryl Domitruk

Objectives

• Evaluate agronomic performance of peas in a monocrop or when intercropped with oats, canola, spring wheat, flax or mustard

Background

Choice of an intercropping system depends on many factors including: weather, machinery available for seeding, harvesting and separation of seed, economics and compatibility of the crops involved. Many organic agriculture farmers have resorted to various intercropping systems with the aim of addressing weed and disease pressure, which often inhibits organic systems under monoculture situations (Pridham and Entz, 2007). Scientists have been advocating for ways to counteract effects of climate change. Intercropping systems can be one of the ways that can help address climate change in some ways such as biological control of insect pests, weeds and diseases. Biological control allows for less use of synthetic chemicals hence addressing the chemical resistance issues. Another benefit of intercropping is improving soil health at low cost considering residual nitrogen if a legume is included. In other studies, pea-wheat intercropping systems have been shown to be efficient in the use of nitrogen due to their spatial selfregulating dynamics, which allows pea to improve its interspecific competitive ability in fields with lower soil nitrogen and vice versa for wheat (Andersen et al., 2004 and Ghaley et al., 2005). This enables future options to reduce synthetic nitrogen inputs and negative environmental impacts of crop production. Compared to pea sole crop, pea-oats intercrop results in reduced pea lodging because of the support provided by oats to the pea crop, this also helps reduce harvesting difficulties and increase economic returns (Kontturi et al., 2010). This study evaluated various intercrop combinations that can be utilized by producers in different areas of production.

Materials and Methods

The trials were established on flax stubble at Reston (Legal: SE 11-7-27 W1) and on wheat stubble at Elva (Legal: SE 26-3-28 W1), in Southwestern Manitoba. Soil type at Reston site was Ryerson5Loam-CoatstoneLoam2-TilstonLoam1 while Elva site was Lauder5-Souris5-Loamy Fine Sand soils. A randomized complete block design with 11 treatments and 4 replicates was used at each site. Reston site was seeded on May 17th while Elva site was seeded on June 3rd at a depth of 0.75". Fertilizer was applied together with the inoculant during seeding at 8-35-20-7-22n (N-P-K-S) lb ac⁻¹ for Reston site and 7-30-0-0 (N-P-K-S)

Ib ac⁻¹ for Elva site. Both sites were sprayed with 0.75 L ac⁻¹ Roundup, 0.1 L ac⁻¹ Authority + 0.65 L ac⁻¹ Rival in flax, pea and mustard, and 0.65 L ac⁻¹ Rival in canola plots soon after seeding to burnoff weeds. Additional herbicide application was done as post emergence control with 17.3 g ac⁻¹ Odyssey in peacanola and peas, and 0.1 L ac⁻¹ Select in all treatments except cereals at Reston. Flea beetles were controlled using 0.074 L ac⁻¹ Pounce at Reston while 0.033 L ac⁻¹ Matador was applied for grasshopper control at Elva. Desiccant products applied at Reston before harvest were 0.65 L ac⁻¹ Reglone + 0.5 L ac⁻¹ + 0.5% v/v LI700 surfactant. Various data were collected and these included plant counts at emergence and flowering, weed counts at flowering, flowering date, grain yield, percentage of pea splits, percentage of pod shatter, test weight and protein content. Disease severity data collected was for mycospharella, powdery mildew, rust, sclerotinia and fusarium wilt. Data were analyzed using Minitab 18 and means were separated using Fisher's LSD at the 5% significance level.

Results and Discussion

Peas intercropped with canola yielded significantly (P=0.001) more grain resulting also in significantly higher partial pea LER (P=0.001) at 1.22 and higher TLER (P<0.0001) at 2.05 compared to other intercrop options at Reston. There were no significant yield differences in other pea intercrop options (Table 24a). At Elva, the highest partial pea yield (2405 kg ha⁻¹) obtained from a mustard intercrop was not significantly different from wheat or canola intercrops but was significantly higher (P=0.002) than pea yield obtained from oats and flax plots. Partial pea land equivalence ratio for pea followed the same pattern as yield with mustard intercrop having 0.76 pea LER which was significantly (P=0.001) higher than oats and flax. The TLER for the mustard intercrop was not significantly different from other treatments except flax which had the lowest at 0.94 compared to 1.27 (P=0.022) for the former (Table 24b). Results from Roblin in Table 24c, indicate that there were no significant differences partial pea yield, LER or TLER regardless of the intercrop option.

Trt	Crop		Yield (kg ha ⁻¹)		LER			
m		Sole	Crop-IC	Pea-IC	Partial Sole	Partial Pea	TLER	
1	Реа	531	*	*	1.00	*	1.00d	
2,7	Flax	2463	1681	306b	0.64	0.58b	1.22cd	
3,8	Oat	4328	4323	344b	1.01	0.66b	1.67ab	
4,9	Wheat	3865	3177	322b	0.83	0.61b	1.44bcd	
5,10	Canola	3735	3070	656a	0.82	1.22a	2.05a	
6,11	Mustard	2034	1651	401b	0.80	0.76b	1.56bc	
	P value			0.001		0.001	<0.0001	
	CV 23			23	23 13			

Table 24a. Analysis of variance for yield, partial LER and TLER for Reston MultiCrop

Table 24b. Analysis of variance for yield, partial LER and TLER for Elva MultiCrop

Trt	Crop		Yield (kg ha ⁻	⁻¹)	LER			
in		Sole	Crop-IC	Pea-IC	Partial Sole	Partial Pea	TLER	
1	Реа	3301	*	*	1.00	*	1.00ab	
2,7	Flax	1865	909	1479bc	0.49	0.45bc	0.94b	
3,8	Oat	4173	3390	1079c	0.83	0.35c	1.17ab	
4,9	Wheat	2220	1302	1920abc	0.59	0.62ab	1.21ab	
5,10	Canola	2602	1255	2258ab	0.51	0.71ab	1.22ab	
6,11	Mustard	1318.4	666	2480a	0.51	0.76a	1.27a	
	P value			0.002		0.001	0.022	
	CV	V 22				20	12	

Trt	Crop		Yield (kg ha ⁻¹)		LER			
m		Sole	Crop-IC	Pea-IC	Partial Sole	Partial Pea	TLER	
1	Реа	939	*	*	1.00	*	1.00a	
2,7	Flax	1386	347	869a	0.31	0.87a	1.18a	
3,8	Oat	6794	4753	371a	0.71	0.43a	1.15a	
4,9	Wheat	4505	2325	371a	0.52	0.44a	0.95a	
5,10	Canola	4451	2071	1691a	0.44	1.98a	2.42a	
6,11	Mustard	2142	1286	956a	0.61	1.07a	1.68a	
	P value			0.101		0.072	0.115	
	CV			81		79	55	

Table 24c. Analysis of variance for yield, partial LER and TLER for Roblin MultiCrop

LER=Land equivalence ratio, TLER=Total land equivalence ratio, IC=Intercrop

In 2019, the percentage change in crop emergence and weed biomass was not significantly different at any of the three sites regardless of the intercrop combination. There was no evidence on whether one intercrop had an advantage over the other in suppressing weeds. These results suggest the need for additional site years of data to determine an appropriate intercrop option that producers can use as an alternative integrated weed control strategy in their areas of production (Table 24d-24f).

Trt	Crop	Final Emergence ppms			% Change Emergence			Weeds (g/m2)	
int		Sole	Crop-IC	Pea-IC	Sole	Crop-IC	Pea-IC	Sole	Pea-IC
1	Реа	77	*	*	13	*	13a	2193	*
2,7	Flax	469	190	41	4	19	13a	920	1274a
3,8	Oat	204	108	29	3	7	28a	1011	1636a
4,9	Wheat	247	106	38	7	3	15a	1302	1756a
5,10	Canola	71	36	33	3	0	29a	893	1026a
6,11	Mustard	33	22	37	0	3	17a	1991	1691a
	P value						0.534		0.094
	CV						83		33

 Table 24d. Analysis of variance for crop emergence and weed biomass for Reston MultiCrop in 2019

 Table 24e. Analysis of variance for crop emergence and weed biomass for Elva MultiCrop in 2019

Trt	Сгор	Final Emergence ppms			% (Change Eme	rgence	Weeds (g/m2)	
		Sole	Crop-IC	Pea-IC	Sole	Crop-IC	Pea-IC	Sole	Pea-IC
1	Реа	85	*	*	9	*	9a	120	*
2,7	Flax	353	196	41	4	11	10a	53	66a
3,8	Oat	240	129	39	7	7	9a	79	25a
4,9	Wheat	270	133	45	0	5	13a	16	43a
5,10	Canola	77	47	41	16	13	5a	182	59a
6,11	Mustard	86	42	42	6	20	9a	90	40a
	P value						0.942		0.083
	CV						113		73

Trt	Crop	Final Emergence ppms			% 0	Change Eme	Weeds (g/m2)		
		Sole	Crop-IC	Pea-IC	Sole	Crop-IC	Pea-IC	Sole	Pea-IC
1	Реа	66	*	*	17	*	17a	93.8	*
2,7	Flax	153	65	49	41	42	14a	274	115a
3,8	Oat	102	84	29	47	15	39a	21.5	81a
4,9	Wheat	99	86	38	51	36	14a	25.75	32.8a
5,10	Canola	58	24	49	35	28	21a	91	35.25a
6,11	Mustard	31	24	48	22	26	0a	123.5	96a
	P value						0.127		0.681
	CV						100		114

Table 24f. Analysis of variance for crop emergence and weed biomass for Roblin MultiCrop in 2019

Whereas protein content (21.6 to 22.4%) was not significantly different among different intercropping systems, there were significant (P<0.0001) differences in pea splits at Reston. Pea splits were lowest in oats intercrop (3.5g 500 seeds⁻¹) compared to pea monocrop and flax intercrop that had 9.4 and 11.2g 500 seeds⁻¹). At Elva, pea splits were lowest (0.1g 500 seeds⁻¹) in oats compared to pea monocrop with 1.8g 500 seeds⁻¹ (P=0.02). Pea splits in other intercrop options were not significantly different from pea splits in oats and pea monocrop. Pea protein content at the same site was significantly (P=0.014) lower in canola intercrop (21.5%) compared to oat and wheat intercrop (22.5%). Although there were no significant differences in pea splits at Roblin, there was a significant (P=0.029) difference in protein content with mustard intercrop recording 26.5% compared to 22.3% for the wheat intercrop. Compared to other sites, Roblin recorded higher protein content with a range of 22.3 to 26.5% compared to 21.5 to 22.5% across all intercrop options in 2019 (Table 24g).

		Reston		Elv	va	Roblin		
Trt	Сгор	Pea splits g/500	Pea protein % DM	Pea splits	Pea protein	Pea splits	Pea protein	
		seeds	basis	g/500 seeds	% DM basis	g/500 seeds	% DM basis	
1	Реа	9.4ab	22.4a	1.8a	22.2ab	5.8a	24.5ab	
2,7	Flax	11.2ab	22.1a	0.4ab	21.8ab	7.8a	24.8ab	
3,8	Oat	3.5c	22.3a	0.1b	22.5a	5.1a	23.1ab	
4,9	Wheat	5.1c	21.9a	1.7ab	22.5a	8.8a	22.3b	
5,10	Canola	5.7bc	22.3a	1.4ab	21.5b	3.5a	23.7ab	
6,11	Mustard	7.3abc	21.6a	1.1ab	21.7ab	6.8a	26.5a	
	P value	<0.0001	0.193	0.02	0.014	0.211	0.029	
	CV	26	2	65	2	47	6	

Table 24g. Analysis of variance for pea splits and protein content at 3 MultiCrop sites in 2019

Net revenue obtained from different cropping systems was significantly different (P<0.0001 at Reston and Elva, and P=0.001 at Roblin). At Reston, pea sole crop had the lowest net revenue of (CAD\$248) compared to the other cropping systems that had positive net revenues (Table 24h). There appeared to be significantly higher net revenues when pea was intercropped with oat, canola or mustard than pea sole crop. On the other hand, net revenue obtained from intercropping pea with flax, oat or wheat was not significantly different (Table 24h). With respect to Elva site, net revenue obtained from pea sole crop and pea intercrop with flax, oats or wheat was significantly lower than that obtained from pea-canola or peamustard, which had the highest net revenues (Table 24i). Negative net revenues in pea sole crop, pea-flax and pea-wheat were obtained at Roblin while pea-oats, pea-canola and pea-mustard recorded the highest net revenues (Table 24j). These results provide some insight on viable options that farmers can select from as a way of spreading risks on the farm. Higher revenue from pea intercropping systems involving mustard or canola could be one of the options that farmers can consider probably due to a better symbiotic relationship between the component crops. This study is still ongoing and with additional site-years, a better understanding of component crop dynamics is assured so as to allow farmer to make informed decisions concerning suitable cropping systems.

				Gross			
Trt	Crop	Sole-CROP	IC – CROP	Reve	nue	Ne	t Revenue
				Sole	IC	Sole	IC
1	Реа	303	*	55	*	(248)	(248)c
2,7	Flax	289	325	499	373	210	48b
3,8	Oat	292	318	425	461	134	142ab
4,9	Wheat	308	316	387	352	79	36b
5,10	Canola	328	339	732	669	404	329a
6,11	Mustard	317	336	689	601	372	265a
	P value						<0.0001
	CV						28

 Table 24h. Economic analysis for Reston MultiCrop in 2019

		Economics								
				Gross Revenue						
Trt	Crop	Sole-CROP	IC – CROP			Ne	t Revenue			
				Sole	IC	Sole	IC			
1	Реа	303	*	343	*	40	40bc			
2,7	Flax	289	325	378	338	89	13c			
3,8	Oat	292	318	410	445	118	127ab			
4,9	Wheat	308	316	223	330	(86)	14bc			
5,10	Canola	328	339	510	481	182	141a			
6,11	Mustard	317	336	446	483	129	147a			
	P value						<0.0001			
	CV						52			

Table 24i. Economic analysis for Elva MultiCrop in 2019

Table 24j. Economic analysis for Roblin MultiCrop in 2019

		Economics							
				Gross Revenue					
Trt	Crop	Sole-CROP	IC – CROP			Net Revenue			
				Sole	IC	Sole	IC		
1	Реа	303	*	98	*	(206)	(206)b		
2,7	Flax	289	325	281	161	(8)	(164)b		
3,8	Oat	292	318	667	506	376	187a		
4,9	Wheat	308	316	451	272	143	(44)ab		
5,10	Canola	328	339	872	581	544	242a		
6,11	Mustard	317	336	725	535	408	199a		
	P value						0.001		
	CV						411		

References

Andersen, M.K., Hauggaard-Nielsen, H., Ambus, P., and Jensen, E.S. 2004. Biomass production, symbiotic nitrogen fixation and inorganic N use in dual and tri-component annual intercrops. *Plant and Soil* **266**: **273–287**.

Ghaley, B. B., Hauggaard-Nielsen, H., Høgh-Jensen, H., and Jensen E. S. 2005. Intercropping of Wheat and Pea as influenced by Nitrogen Fertilization. *Nutrient Cycling Agroecosystems* **73 (2005): 201-212**. https://link.springer.com/article/10.1007/s10705-005-2475-9.

Kontturi, M., Laine, A., Niskanen, M., Hurme, T., Hyövelä, M., and Peltonen-Sainio, P. 2005. Pea-oat intercrops to sustain lodging resistance and yield formation in northern European conditions. *Soil and Plant Science* **61** (7): **612-621**. https://doi.org/10.1080/09064710.2010.536780.

Pridham, J. C and Entz, M. H. 2007. Intercropping Spring Wheat with Cereal Grains, Legumes, Oilseeds Fails to Improve Productivity under Organic Management. *Agronomy Journal* **100 (5): 1436-1442**. doi:10.2134/agronj2007.0227.